Nehari manifold and multiplicity result for elliptic equation involving p-laplacian problems
نویسندگان
چکیده
منابع مشابه
The Nehari Manifold for a Class of Elliptic Equations of P-laplacian Type
1 1 , , 0, , r s p u u h x u dx g x u dx x u x + + −∆ = + ∈ Ω = ∈ ∂Ω () 1, 0 p W Ω () () () 1 1 , 0. r s p u x h x u dx g x u dx in u on + + −∆ = + Ω = ∂Ω () E () () 1 1 / r p s Np N p N p < < − < < − + − () () () 0 0 r h L L C ∞ ∈ Ω Ω Ω 0 1 1 1, r r p * + + = ()() 0. 1 Np r Np r N p = − + − () () 0 s g L L ∞ ∈ Ω Ω 0 1 1 1, s s p * + + = ()() 0 ,. 1 Np Np s p Np s N p N p * ...
متن کاملMULTIPLICITY RESULTS FOR p-SUBLINEAR p-LAPLACIAN PROBLEMS INVOLVING INDEFINITE EIGENVALUE PROBLEMS VIA MORSE THEORY
We establish some multiplicity results for a class of p-sublinear pLaplacian problems involving indefinite eigenvalue problems using Morse theory.
متن کاملThe Solvability of Concave-Convex Quasilinear Elliptic Systems Involving $p$-Laplacian and Critical Sobolev Exponent
In this work, we study the existence of non-trivial multiple solutions for a class of quasilinear elliptic systems equipped with concave-convex nonlinearities and critical growth terms in bounded domains. By using the variational method, especially Nehari manifold and Palais-Smale condition, we prove the existence and multiplicity results of positive solutions.
متن کاملThe Nehari manifold for indefinite semilinear elliptic systems involving critical exponent
In this paper, we study the combined effect of concave and convex nonlinearities on the number of solutions for an indefinite semilinear elliptic system ðEk;lÞ involving critical exponents and sign-changing weight functions. Using Nehari manifold, the system is proved to have at least two nontrivial nonnegative solutions when the pair of the parameters ðk;lÞ belongs to a certain subset of R. 20...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Boletim da Sociedade Paranaense de Matemática
سال: 2018
ISSN: 2175-1188,0037-8712
DOI: 10.5269/bspm.v36i4.34078